При клеточном дыхании образуется атф. Этапы клеточного дыхания

В качестве исходных субстратов дыхания могут выступать различные вещества, преобразуемые в ходе специфических метаболических процессов в Ацетил-КоА с высвобождением ряда побочных продуктов. Восстановление НАД (НАДФ) и образование АТФ может происходить уже на этом этапе, однако большая их часть образуется в цикле трикарбоновых кислот при переработке Ацетил-КоА.

Гликолиз

Гликолиз - путь ферментативного расщепления глюкозы - является общим практически для всех живых организмов процессом. У аэробов он предшествует собственно клеточному дыханию, у анаэробов завершается брожением . Сам по себе гликолиз является полностью анаэробным процессом и для осуществления не требует присутствия кислорода .

Первый его этап протекает с высвобождением 2 молекул АТФ и включает в себя расщепление молекулы глюкозы на 2 молекулы глицеральдегид-3-фосфата . На втором этапе происходит НАД -зависимое окисление глицеральдегид-3-фосфата, сопровождающееся субстратным фосфорилированием , то есть присоединением к молекуле остатка фосфорной кислоты и формированием в ней макроэргической связи, после которого остаток переносится на АДФ с образованием АТФ .

Таким образом, уравнение гликолиза имеет следующий вид:

Глюкоза + 2НАД + + 4АДФ + 2АТФ + 2Ф н = 2ПВК + 2НАД∙Н + 2 АДФ + 4АТФ + 2H 2 O + 4Н + .

Сократив АТФ и АДФ из левой и правой частей уравнения реакции, получим:

Глюкоза + 2НАД + + 2АДФ + 2Ф н = 2НАД∙Н + 2ПВК + 2АТФ + 2H 2 O + 4Н + .

Окислительное декарбоксилирование пирувата

Образовавшаяся в ходе гликолиза пировиноградная кислота (пируват) под действием пируватдегидрогеназного комплекса (сложная структура из 3 различных ферментов и более 60 субъединиц) распадается на углекислый газ и ацетальдегид , который вместе с Коферментом А образует Ацетил-КоА . Реакция сопровождается восстановлением НАД до НАД∙Н .

У эукариот процесс протекает в матриксе митохондрий .

β-окисление жирных кислот

Наконец, на четвёртой стадии образовавшаяся β-кетокислота расщепляется β-кетотиолазой в присутствии кофермента А на ацетил-КоА и новый ацил-КоА, в которой углеродная цепь на 2 атома короче. Цикл β-окисления повторяется до тех пор, пока вся жирная кислота не будет переработана в ацетил-КоА.

Цикл трикарбоновых кислот

Суммарное уравнение реакций:

Ацетил-КоА + 3НАД + + ФАД + ГДФ + Ф н + 2H 2 O + КоА-SH = 2КоА-SH + 3НАДH + 3H + + ФАДН 2 + ГТФ + 2CO 2

У эукариот ферменты цикла находятся в свободном состоянии в матриксе митохондрий, только сукцинатдегидрогеназа встроена во внутреннюю митохондриальную мембрану.

Основное количество молекул АТФ вырабатывается по способу окислительного фосфорилирования на последней стадии клеточного дыхания: в электронтранспортной цепи. Здесь происходит окисление НАД∙Н и ФАДН 2 , восстановленных в процессах гликолиза, β-окисления, цикла Кребса и т.д. Энергия, выделяющаяся в ходе этих реакций, благодаря цепи переносчиков электронов, локализованной во внутренней мембране митохондрий (у прокариот - в цитоплазматической мембране), трансформируется в трансмембранный протонный потенциал . Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей. Подсчитано, что молекула НАД∙Н может дать в ходе этого процесса 2.5 молекулы АТФ, ФАДН 2 - 1.5 молекулы.

Конечным акцептором электрона в дыхательной цепи аэробов является кислород .

Анаэробное дыхание

Общее уравнение дыхания, баланс АТФ

Стадия Выход кофермента Выход АТФ (ГТФ) Способ получения АТФ
Первая фаза гликолиза −2 Фосфорилирование глюкозы и фруктозо-6-фосфата с использованием 2 АТФ из цитоплазмы.
Вторая фаза гликолиза 4 Субстратное фосфорилирование
2 НАДН 3 (5) Окислительное фосфорилирование. Только 2 АТФ образуется из НАДН в электронтранспортной цепи, поскольку кофермент образуется в цитоплазме и должен быть транспортирован в митохондрии. При использовании малат-аспартатного челнока для транспорта в митохондрии из НАДН образуется 3 моль АТФ. При использовании же глицерофосфатного челнока образуется 2 моль АТФ.
Декарбоксилирование пирувата 2 НАДН 5 Окислительное фосфорилирование
Цикл Кребса 2 Субстратное фосфорилирование
6 НАДН 15 Окислительное фосфорилирование
2 ФАДН 2 3 Окислительное фосфорилирование
Общий выход 30 (32) АТФ При полном окислении глюкозы до углекислого газа и окислении всех образующихся коферментов.

См. также

Напишите отзыв о статье "Клеточное дыхание"

Примечания

Отрывок, характеризующий Клеточное дыхание

Дни шли, а я не знала, была ли моя девочка всё ещё в Мэтэоре? Не появлялся ли за ней Караффа?.. И всё ли было с ней хорошо.
Моя жизнь была пустой и странной, если не сказать – безысходной. Я не могла покинуть Караффу, так как знала – стоит мне только исчезнуть, и он тут же выместит свою злость на моей бедной Анне... Также, я всё ещё не в силах была его уничтожить, ибо не находила пути к защите, которую подарил ему когда-то «чужой» человек. Время безжалостно утекало, и я всё сильнее чувствовала свою беспомощность, которая в паре с бездействием, начинала медленно сводить меня с ума...
Прошёл почти уже месяц после моего первого визита в подвалы. Рядом не было никого, с кем я могла бы обмолвиться хотя бы словом. Одиночество угнетало всё глубже, поселяя в сердце пустоту, остро приправленную отчаяньем...
Я очень надеялась, что Мороне всё-таки выжил, несмотря на «таланты» Папы. Но возвращаться в подвалы побаивалась, так как не была уверена, находился ли там всё ещё несчастный кардинал. Мой повторный визит мог навлечь на него настоящую злобу Караффы, и платить за это Мороне пришлось бы по-настоящему дорого.
Оставаясь отгороженной от любого общения, я проводила дни в полнейшей «тишине одиночества». Пока, наконец, не выдержав более, снова спустилась в подвал...
Комната, в которой я месяц назад нашла Мороне, на этот раз пустовала. Оставалось только надеяться, что отважный кардинал всё ещё жил. И я искренне желала ему удачи, которой узникам Караффы, к сожалению, явно не доставало.
И так как я всё равно уже находилась в подвале, то, чуть подумав, решила посмотреть его дальше, и осторожно открыла следующую дверь....
А там, на каком-то жутком пыточном «инструменте» лежала совершенно голая, окровавленная молодая девушка, тело которой представляло собою настоящую смесь живого палёного мяса, порезов и крови, покрывавших её всю с головы до ног... Ни палача, ни, тем более – Караффы, на моё счастье, в комнате пыток не было.
Я тихонько подошла к несчастной и осторожно погладила её по опухшей, нежной щеке. Девушка застонала. Тогда, бережно взяв её хрупкие пальцы в свою ладонь, я медленно начала её «лечить»... Вскоре на меня удивлённо глядели чистые, серые глаза...
– Тихо, милая... Лежи тихо. Я попробую тебе помочь, насколько это возможно. Но я не знаю, достаточно ли у меня будет времени... Тебя очень сильно мучили, и я не уверена, смогу ли всё это быстро «залатать». Расслабься, моя хорошая, и попробуй вспомнить что-то доброе... если сможешь.
Девушка (она оказалась совсем ещё ребёнком) застонала, пытаясь что-то сказать, но слова почему-то не получались. Она мычала, не в состоянии произнести чётко даже самого краткого слова. И тут меня полоснуло жуткое понимание – у этой несчастной не было языка!!! Они его вырвали... чтобы не говорила лишнего! Чтобы не крикнула правду, когда будут сжигать на костре... Чтобы не могла сказать, что они с ней творили...
О боже!.. Неужели всё это вершили ЛЮДИ???
Чуть успокоив своё омертвевшее сердце, я попыталась обратиться к ней мысленно – девочка услышала. Что означало – она была одарённой!.. Одной из тех, кого Папа так яростно ненавидел. И кого так зверски сжигал живьём на своих ужасающих человеческих кострах....
– Что же они с тобой сделали, милая?!.. За что тебе отняли речь?!
Стараясь затянуть повыше упавшее с её тела грубое рубище непослушными, дрожащими руками, потрясённо шептала я.
– Не бойся ничего, моя хорошая, просто подумай, что ты хотела бы сказать, и я постараюсь услышать тебя. Как тебя зовут, девочка?
– Дамиана... – тихо прошелестел ответ.
– Держись, Дамиана, – как можно ласковее улыбнулась я. – Держись, не ускользай, я постараюсь помочь тебе!
Но девушка лишь медленно качнула головой, а по её избитой щеке скатилась чистая одинокая слезинка...
– Благодарю вас... за добро. Но я не жилец уже... – прошелестел в ответ её тихий «мысленный» голос. – Помогите мне... Помогите мне «уйти». Пожалуйста... Я не могу больше терпеть... Они скоро вернутся... Прошу вас! Они осквернили меня... Пожалуйста, помогите мне «уйти»... Вы ведь знаете – как. Помогите... Я буду и «там» благодарить, и помнить вас...
Она схватила своими тонкими, изуродованными пыткой пальцами моё запястье, вцепившись в него мёртвой хваткой, будто точно знала – я и вправду могла ей помочь... могла подарить желанный покой...
Острая боль скрутила моё уставшее сердце... Эта милая, зверски замученная девочка, почти ребёнок, как милости, просила у меня смерти!!! Палачи не только изранили её хрупкое тело – они осквернили её чистую душу, вместе изнасиловав её!.. И теперь, Дамиана готова была «уйти». Она просила смерти, как избавления, даже на мгновение, не думая о спасении. Она была замученной и осквернённой, и не желала жить... У меня перед глазами возникла Анна... Боже, неужели и её ждал такой же страшный конец?!! Смогу ли я её спасти от этого кошмара?!
Дамиана умоляюще смотрела на меня своими чистыми серыми глазами, в которых отражалась нечеловечески глубокая, дикая по своей силе, боль... Она не могла более бороться. У неё не хватало на это сил. И чтобы не предавать себя, она предпочитала уйти...
Что же это были за «люди», творившие такую жестокость?!. Что за изверги топтали нашу чистую Землю, оскверняя её своей подлостью и «чёрной» душой?.. Я тихо плакала, гладя милое лицо этой мужественной, несчастной девчушки, так и не дожившей даже малой частью свою грустную, неудавшуюся жизнь... И мою душу сжигала ненависть! Ненависть к извергу, звавшему себя римским Папой... наместником Бога... и святейшим Отцом... наслаждавшимся своей прогнившей властью и богатством, в то время, как в его же жутком подвале из жизни уходила чудесная чистая душа. Уходила по собственному желанию... Так как не могла больше вынести запредельную боль, причиняемую ей по приказу того же «святого» Папы...
О, как же я ненавидела его!!!.. Всем сердцем, всей душой ненавидела! И знала, что отомщу ему, чего бы мне это ни стоило. За всех, кто так зверски погиб по его приказу... За отца... за Джироламо... за эту добрую, чистую девочку... и за всех остальных, у кого он играючи отнимал возможность прожить их дорогую и единственную в этом теле, земную жизнь.
– Я помогу тебе, девочка... Помогу тебе милая... – ласково баюкая её, тихо шептала я. – Успокойся, солнышко, там не будет больше боли. Мой отец ушёл туда... Я говорила с ним. Там только свет и покой... Расслабься, моя хорошая... Я исполню твоё желание. Сейчас ты будешь уходить – не бойся. Ты ничего не почувствуешь... Я помогу тебе, Дамиана. Я буду с тобой...
Из её изуродованного физического тела вышла удивительно красивая сущность. Она выглядела такой, какой Дамиана была, до того, как появилась в этом проклятом месте.
– Спасибо вам... – прошелестел её тихий голос. – Спасибо за добро... и за свободу. Я буду помнить вас.
Она начала плавно подниматься по светящемуся каналу.
– Прощай Дамиана... Пусть твоя новая жизнь будет счастливой и светлой! Ты ещё найдёшь своё счастье, девочка... И найдёшь хороших людей. Прощай...
Её сердце тихо остановилось... А исстрадавшаяся душа свободно улетала туда, где никто уже не мог причинять ей боли. Милая, добрая девочка ушла, так и не узнав, какой чудесной и радостной могла быть её оборванная, непрожитая жизнь... скольких хороших людей мог осчастливить её Дар... какой высокой и светлой могла быть её непознанная любовь... и как звонко и счастливо могли звучать голоса её не родившихся в этой жизни детей...
Успокоившееся в смерти лицо Дамианы разгладилось, и она казалась просто спящей, такой чистой и красивой была теперь... Горько рыдая, я опустилась на грубое сидение рядом с её опустевшим телом... Сердце стыло от горечи и обиды за её невинную, оборванную жизнь... А где-то очень глубоко в душе поднималась лютая ненависть, грозясь вырваться наружу, и смести с лица Земли весь этот преступный, ужасающий мир...

Основными процессами, обеспечивающими клетку энергией, являются фотосинтез, хемосинтез, дыхание, брожение и гликолиз как этап дыхания.
С кровью кислород проникает в клетку, вернее в особые клеточные структуры – митохондрии. Они есть во всех клетках, за исключением клеток бактерий, сине-зеленых водорослей и зрелых клеток крови (эритроцитов). В митохондриях кислород вступает в многоступенчатую реакцию с различными питательными веществами – белками, углеводами, жирами и др. Этот процесс называется клеточным дыханием. В результате выделяется химическая энергия, которую клетка запасает в особом веществе – аденозинтрифосфорной кислоте, или АТФ. Это универсальный накопитель энергии, которую организм тратит на рост, движение, поддержание своей жизнедеятельности.

Дыхание – это окислительный, с участием кислорода распад органических питательных веществ, сопровождающийся образованием химически активных метаболитов и освобождением энергии, которые используются клетками для процессов жизнедеятельности.


Дыхание, в отличие от горения, процесс многоступенчатый. В нем выделяют две основные стадии: гликолиз и кислородный этап.

Гликолиз

Драгоценная для организма АТФ образуется не только в митохондриях, но и в цитоплазме клетки в результате гликолиза (от греч. «гликис» - «сладкий» и «лисис» – «распад»). Гликолиз не является мембранозависимым процессом. Он происходит в цитоплазме. Однако ферменты гликолиза связаны со структурами цитоскелета.
Гликолиз – процесс очень сложный. Это процесс расщепления глюкозы под действием различных ферментов, который не требует участия кислорода. Для распада и частичного окисления молекулы глюкозы необходимо согласованное протекание одиннадцати последовательных реакций. При гликолизе одна молекула глюкозы дает возможность синтезировать две молекулы АТФ. Продукты расщепления глюкозы могут затем вступать в реакцию брожения, превращаясь в этиловый спирт или молочную кислоту. Спиртовое брожение свойственно дрожжам, а молочнокислое – свойственно клеткам животных и некоторых бактерий. Многим аэробным, т.е. живущим исключительно в бес кислородной среде, организмам хватает энергии, образующейся в результате гликолиза и брожения. Но аэробным организмам необходимо дополнить этот небольшой запас, причем весьма существенно.

Кислородный этап дыхания

Продукты расщепления глюкозы попадают в митохондрию. Там от них сначала отщепляется молекула углекислого газа, который выводится из организма при выходе. «Дожигание» происходит в так называемом цикле Кребса (приложение №1) (по имени описавшего его английского биохимика) – последовательной цепи реакций. Каждый из участвующих в ней ферментов вступает в соединения, а после нескольких превращений вновь освобождается в первоначальном виде. Биохимический цикл вовсе не бесцельное хождение по кругу. Он больше схож с паромом, который снует между двумя берегами, но в итоге люди и машины движутся в нужном направлении. В результате совершающихся в цикле Кребса реакций синтезируются дополнительные молекулы АТФ, отщепляются дополнительные молекулы углекислого газа и атомы водорода.
Жиры тоже участвуют в этой цепочке, но их расщепление требует времени, поэтому если энергия нужна срочно, то организм использует не жиры, а углеводы. Зато жиры – очень богатый источник энергии. Могут окислятся для энергетических нужд и белки, но лишь в крайнем случае, например при длительном голодании. Белки для клетки – неприкосновенный запас.
Главный по эффективности процесс синтеза АТФ происходит при участии кислорода в многоступенчатой дыхательной цепи. Кислород способен окислять многие органические соединения и при этом выделять много энергии сразу. Но такой взрыв для организма был бы губителен. Роль дыхательной цепи и всего аэробного, т.е. связанного с кислородом, дыхания состоит именно в том, чтобы организм обеспечивался энергией непрерывно и небольшими порциями – в той мере, в какой мере это организму нужно. Можно провести аналогию с бензином: разлитый по земле и подожженный, он мгновенно вспыхнет без всякой пользы. А в автомобиле, сгорая понемногу, бензин будет несколько часов совершать полезную работу. Но для этого такое сложное устройство, как двигатель.

Дыхательная цепь в совокупности с циклом Кребса и гликолизом позволяет довести «выход» молекул АТФ с каждой молекулы глюкозы до 38. А ведь при гликолизе это соотношение было лишь 2:1. Таким образом, коэффициент полезного действия аэробного дыхания намного больше.
Механизм синтеза АТФ при гликолизе относительно прост и может без труда быть воспроизведен в пробирке. Однако никогда не удавалось лабораторно смоделировать дыхательный синтез АТФ. В 1961 году английский биохимик Питер Митчел высказал предположение, что ферменты– соседи по дыхательной цепи –соблюдают не только строгую очередность, но и четкий порядок в пространстве клетки. Дыхательная цепь, не меняя своего порядка, закрепляется во внутренней оболочке (мембране) митохондрии и несколько раз“прошивает”ее будто стежками. Попытки воспроизвести дыхательный синтез АТФ потерпели неудачу, потому что роль мембраны исследователями недооценивались. А ведь в реакции участвуют еще ферменты, сосредоточенные в грибовидных наростах на внутренней стороне мембраны. Если эти наросты удалить, то АТФ синтезироваться не будет.

В процессе дыхания образуется огромное количество энергии. Если вся она выделилась бы сразу, то клетка перестала бы существовать. Но этого не происходит, потому что энергия выделяется не вся сразу, а ступенчато, небольшими порциями. Выделение энергии небольшими дозами обусловлено тем, что дыхание представляет собой многоступенчатый процесс, на отдельных этапах которого образуются различные промежуточные продукты (с разной длиной углеродной цепочки) и выделяется энергия. Выделяющаяся энергия не расходуется в виде тепла, а запасается в универсальном макроэргическом соединении - АТФ. При расщеплении АТФ энергия может использоваться в любых процессах, необходимых для поддержания жизнедеятельности организма: на синтез различных органических веществ, механическую работу, поддержание осмотического давления протоплазмы и т. д.

Дыхание является процессом, дающим энергию, однако его биологическое значение этим не ограничивается. В результате химических реакций, сопровождающих дыхание, образуется большое количество промежуточных соединений. Из этих соединений, имеющих различное количество углеродных атомов, могут синтезироваться самые разнообразные вещества клетки: аминокислоты, жирные кислоты, жиры, белки, витамины.

Поэтому обмен углеводов определяет остальные обмены веществ (белков, жиров). В этом его огромное значение.

С процессом дыхания, его химическими реакциями связано одно из удивительных свойств микробов - способность испускать видимый свет - люминесцировать.

Известно, что ряд живых организмов, в том числе бактерии, могут испускать видимый свет. Люминесценция, вызываемая микроорганизмами, известна уже в течение столетий. Скопление люминесцирующих бактерий, находящихся в симбиозе с мелкими морскими животными, иногда приводит к свечению моря; с люминесценцией встречались также при росте некоторых бактерий на мясе и т. д.

К основным компонентам, взаимодействие между которыми приводит к испусканию света, относятся восстановленные формы ФМН или НАД, молекулярный кислород, фермент люцифераэа и окисляемое соединение - люциферин. Предполагается, что восстановленные НАД или ФМН реагируют с люциферазой, кислородом и люциферином, в результате чего электроны в некоторых молекулах переходят в возбужденное состояние и возвращение этих электронов на основной уровень сопровождается испусканием света. Люминесценцию у микробов рассматривают как «расточительный процесс», так как при этом энергетическая эффективность дыхания снижается.



Итак, клеточное дыхание происходит в клетке.

Но где именно? Какая органелла осуществляет этот процесс?

Основной этап клеточного дыхания осуществляется в . Как известно, основной продукт работы митохондрии — молекулы АТФ — синоним понятия «энергия» в биологии. Действительно, основным продуктом этого процесса является энергия, молекулы АТФ.

АТФ — это молекула — синоним энергии в биологии. Расшифровывется как Аденозинтрифосфат или Аденозинтрифосфорная кислота. Как видно из рисунка формулы, в составе молекулы есть:

  1. три связи с остатками фосфорной кислоты, при разрыве которых выделяется большое количество энергии,
  2. углевод рибоза (пятиатомый сахар) и
  3. азотистое основание

1 Этап клеточного дыхания — подготовительный

Каким образом вещества попадают в клетки? В процессе пищеварения организма. Суть процесса пищеварения — расщепление полимеров, поступающих в организм с пищей, до мономеров:

  • расщепляются до аминокислот;
  • — до глюкозы;
  • расщепляются до глицерина и жирных кислот.

Т.е. в клетку поступают уже мономеры.

2 Этап клеточного пищеварения

Гликолиз — ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ.

Гликолиз при аэробных условиях ведёт к образованию пировиноградной кислоты (ПВК) (пирувата),

гликолиз в анаэробных условиях (бескислородных или при недостатке кислорода) ведёт к образованию молочной кислоты (лактата).

CH 3 -CH(OH)-COOH

Процесс идет с участием молекул фосфорной кислоты, поэтому называется окислительное фосфорилирование

Гликолиз является основным путём глюкозы в организме животных.

Превращения происходят в , т.е. процесс будет однозначно анаэробным: молекула глюкозы расщепится до ПВК — пировиноградной кислоты с выделением 2 молекул АТФ:

3 Этап клеточного пищеварения (кислородный)

Поступая в митохондрию, происходит окисление: ПВК под действием кислорода расщепляется до углекислого газа (суммарное уравнение):

Вначале отщепляется один углеродный атом пировиноградной кислоты. При этом образуется углекислый газ, энергия (она запасается в одной молекуле НАДФ) и двухуглеродная молекула - ацетильная группа. Затем реакционная цепь поступает в метаболический координационный центр клетки - цикл Кребса .

Цикл Кребса

(цикл лимонной кислоты)

Цикл Кребса — это реакции, которые начинаются, когда определенная входящая молекула соединяется с другой молекулой, выполняющей функцию «помощника». Такая комбинация инициирует серию других химических реакций, в которых образуются молекулы-продукты и в конце воссоздается молекула-помощник, которая может начать весь процесс вновь.

Для переработки энергии, запасенной в одной молекуле глюкозы , цикл Кребса нужно пройти дважды

Процесс многостадийный, и в нем, помимо различных кислот с интересными названиями участвуют коферменты (КоА).

Что такое коферменты?

(коэнзимы)

  • это органические вещества небольшого размера
  • они способны соединяться с белками (или прямо с ферментами, у которых, кстати, белковая природа), образуя активное вещество, косплекс, которое будет являться чем-то вроде катализатора.

Приставка «ко-» — это как «со-» — сопродюсер, соотечественник и т.п. Т.е. «вместе, с «

Гликолиз - катаболический путь исключительной важности.

Он обеспечивает энергией клеточные реакции, в том числе и синтез белка.

Промежуточные продукты гликолиза используются при синтезе жиров.

Пируват также может быть использован для синтеза других соединений. Благодаря гликолизу производительность митохондрий и доступность кислорода не ограничивают мощность мышц при кратковременных предельных нагрузках.

Использование различных начальных субстратов

В качестве исходных субстратов дыхания могут выступать различные вещества, преобразуемые в ходе специфических метаболических процессов в Ацетил-КоА с высвобождением ряда побочных продуктов. Восстановление НАД (НАДФ) и образование АТФ может происходить уже на этом этапе, однако большая их часть образуется в цикле трикарбоновых кислот при переработке Ацетил-КоА.

Гликолиз

Гликолиз - путь ферментативного расщепления глюкозы - является общим практически для всех живых организмов процессом. У аэробов он предшествует собственно клеточному дыханию, у анаэробов завершается брожением . Сам по себе гликолиз является полностью анаэробным процессом и для осуществления не требует присутствия кислорода .

Первый его этап протекает с расходом энергии 2 молекул АТФ и включает в себя расщепление молекулы глюкозы на 2 молекулы глицеральдегид-3-фосфата . На втором этапе происходит НАД -зависимое окисление глицеральдегид-3-фосфата, сопровождающееся субстратным фосфорилированием, то есть присоединением к молекуле остатка фосфорной кислоты и формированием в ней макроэргической связи, после которого остаток переносится на АДФ с образованием АТФ .

Таким образом, уравнение гликолиза имеет следующий вид:

Глюкоза + 2НАД + + 4АДФ + 2АТФ + 2Ф н = 2ПВК + 2НАД∙Н + 2 АДФ + 4АТФ + 2H 2 O + 4Н + .

Сократив АТФ и АДФ из левой и правой частей уравнения реакции, получим:

Глюкоза + 2НАД + + 2АДФ + 2Ф н = 2НАД∙Н + 2ПВК + 2АТФ + 2H 2 O + 4Н + .

Окислительное декарбоксилирование пирувата

Образовавшаяся в ходе гликолиза пировиноградная кислота (пируват) под действием пируватдегидрогеназного комплекса (сложная структура из 3 различных ферментов и более 60 субъединиц) распадается на углекислый газ и ацетальдегид , который вместе с Кофермент А образует Ацетил-КоА . Реакция сопровождается восстановлением НАД до НАД∙Н .

У эукариот процесс протекает в матриксе митохондрий .

β-окисление жирных кислот

Основная статья: β-окисление

Наконец, на четвёртой стадии образовавшаяся β-кетокислота расщепляется β-кетотиолазой в присутствии кофермента А на ацетил-КоА и новый ацил-КоА, в которой углеродная цепь на 2 атома короче. Цикл β-окисления повторяется до тех пор, пока вся жирная кислота не будет переработана в ацетил-КоА.

Цикл трикарбоновых кислот

Суммарное уравнение реакций:

Ацетил-КоА + 3НАД + + ФАД + ГДФ + Ф н + 2H 2 O + КоА-SH = 2КоА-SH + 3НАДH + 3H + + ФАДН 2 + ГТФ + 2CO 2

У эукариот ферменты цикла находятся в свободном состоянии в матриксе митохондрий, только сукцинатдегидрогеназа встроена во внутреннюю митохондриальную мембрану.

Основное количество молекул АТФ вырабатывается по способу окислительного фосфорилирования на последней стадии клеточного дыхания: в электронтранспортной цепи. Здесь происходит окисление НАД∙Н и ФАДН 2 , восстановленных в процессах гликолиза, β-окисления, цикла Кребса и т. д.. Энергия, выделяющаяся в ходе этих реакций, благодаря цепи переносчиков электронов, локализованной во внутренней мембране митохондрий (у прокариот - в цитоплазматической мембране), трансформируется в трансмембранный протонный потенциал. Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей. Подсчитано, что молекула НАД∙Н может дать в ходе этого процесса 2.5 молекулы АТФ, ФАДН 2 - 1.5 молекулы.

Конечным акцептором электрона в дыхательной цепи аэробов является кислород .

Анаэробное дыхание

Общее уравнение дыхания, баланс АТФ

Стадия Выход кофермента Выход АТФ (ГТФ) Способ получения АТФ
Первая фаза гликолиза −2 Фосфорилирование глюкозы и фруктозо-6-фосфата с использованием 2 АТФ из цитоплазмы.
Вторая фаза гликолиза 4 Субстратное фосфорилирование
2 НАДН 3 (5) Окислительное фосфорилирование. Только 2 АТФ образуется из НАДН в электронтранспортной цепи, поскольку кофермент образуется в цитоплазме и должен быть транспортирован в митохондрии. При использовании малат-аспартатного челнока для транспорта в митохондрии из НАДН образуется 3 моль АТФ. При использовании же глицерофосфатного челнока образуется 2 моль АТФ.
Декарбоксилирование пирувата 2 НАДН 5 Окислительное фосфорилирование
Цикл Кребса 2 Субстратное фосфорилирование
6 НАДН 15 Окислительное фосфорилирование
2 ФАДН 2 3 Окислительное фосфорилирование
Общий выход 30 (32) АТФ При полном окислении глюкозы до углекислого газа и окислении всех образующихся коферментов.

Примечания

См. также


Wikimedia Foundation . 2010 .

  • Серна
  • ДЫХАНИЕ Современная энциклопедия

    ДЫХАНИЕ - совокупность процессов, обеспечивающих поступление в организм кислорода и удаление углекислого газа (внешнее дыхание), а также использование кислорода клетками и тканями для окисления органических веществ с освобождением энергии, необходимой для… … Большой Энциклопедический словарь

    Дыхание - ДЫХАНИЕ, совокупность процессов, обеспечивающих поступление в организм кислорода и удаление диоксида углерода (внешнее дыхание), а также использование кислорода клетками и тканями для окисления органических веществ с освобождением энергии,… … Иллюстрированный энциклопедический словарь

    ДЫХАНИЕ - ДЫХАНИЕ, я, ср. 1. Процесс поглощения кислорода и выделения углекислого газа живыми организмами. Органы дыхания. Клеточное д. (спец.). 2. Втягивание и выпускание воздуха лёгкими. Ровное д. Сдерживать д. Д. весны (перен.). Второе дыхание прилив… … Толковый словарь Ожегова

    дыхание - ДЫХАНИЕ, ДЫХАНЬЕ, я; ср. 1. Вбирание и выпускание воздуха лёгкими или (у некоторых животных) иными соответствующими органами как процесс поглощения кислорода и выделения углекислого газа живыми организмами. Органы дыхания. Шумное, тяжёлое,… … Энциклопедический словарь

    Дыхание - в общеупотребительном смысле обозначает ряд беспрерывно чередующихся во время жизни движений грудной клетки в форме вдоха и выдоха и обусловливающих, с одной стороны, прилив свежого воздуха в легкие, а с другой выведение из них уже испорченного… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Дыхание - I Дыхание (respiratio) совокупность процессов, обеспечивающих поступление из атмосферного воздуха в организм кислорода, использование его в биологическом окислении органических веществ и удаление из организма углекислого газа. В результате… … Медицинская энциклопедия

метаболизм

Метаболизм – совокупность реакций биосинтеза и расщепления веществ в клетке. Определенная последовательность ферментативных превращений вещества в клетке называется метаболическим путем, а образующиеся промежуточные продукты – метаболиты.

Двумя взаимосвязанными в пространстве и времени сторонами метаболизма являются пластический и энергетический обмен.

Совокупность реакций биологического синтеза, когда из простых веществ, поступающих в клетку извне, образуются сложные органические вещества, подобные содержимому клетки, называется анаболизм (пластический обмен). Происходит ассимиляция. Эти реакции идут с использованием энергии, образующейся в результате реакций расщепления органических веществ, поступающих с пищей. Наиболее интенсивно пластический обмен происходит в процессе роста организма. Наиболее важные процессы анаболизма – фотосинтез и синтез белка.

Катаболизма (энергетический обмен) – ферментативные расщепления (гидролиз, окисление) сложных органических соединений на более простые. Происходит диссимиляция. Эти реакции идут с выделением энергии.

Этапы энергетического обмена. Клеточное дыхание.

Процессом, противоположным биосинтезу, является диссимиляция, или катаболизм, - совокупность реакций расщепления. При расщеплении высокомолекулярных соединений выделяется энергия, необходимая для реакций биосинтеза. Поэтому диссимиляцию называют еще энергетическим обменом клетки. Гетеротрофные организмы получают энергию, необходимую для жизнедеятельности с пищей. Химическая энергия питательных веществ заключена в различных ковалентных связях между атомами в молекуле органических соединений. Часть энергии, освобождаемая из питательных веществ, рассеивается в форме теплоты, а часть аккумулируется, т.е. накапливается в богатых энергией макроэргических фосфатных связях АТФ. Именно АТФ обеспечивает энергией все виды клеточных функций: биосинтез, механическую работу, активный перенос веществ через мембраны и т.д. Синтез АТФ осуществляется в митохондриях. Клеточное дыхание – ферментативное разложение органических веществ (глюкозы) в клетке до углекислого газа и воды в присутствии свободного кислорода, сопряженное с запасанием выделяющейся при этом энергии.

Энергетический обмен делят на тир этапа, каждый из которых осуществляется при участии специальных ферментов в определенных участках клеток.

    Первый этап – подготовительный. У человека и животных в процессе пищеварения крупные молекулы пищи, включающие олиго-, полисахариды, липиды, белки, нуклеиновые кислоты, распадаются на более мелкие молекулы – глюкозу, глицерин, жирные кислоты, аминокислоты, нуклеотиды. На этом этапе выделяется небольшое количество энергии, которая рассеивается в виде теплоты. Эти молекулы всасываются в кишечнике в кровь и доставляются в различные органы и ткани, где могут служить как строительным материалом для синтеза новых веществ, необходимых организму, так и для обеспечения организма энергией.

    Второй этап – бескислородный, или неполный, анаэробное дыхание (гликолиз или брожение). Образующиеся на этом этапе вещества при участии ферментов подвергаются дальнейшему расщеплению.

Гликолиз – один из центральных путей катаболизма глюкозы, когда расщепление углевода с образованием АТФ происходит в бескислородных условиях. У аэробных организмов (растения, животные) это одна из стадий клеточного дыхания, у микроорганизмов – брожение – основной способ получения энергии. Ферменты гликолиза локализованы в цитоплазмы. Процесс протекает в два этапа при отсутствии кислорода.

1). Подготовительный этап – происходит активирование молекул глюкозы в результате присоединения фосфатных групп, идущее с затратой АТФ, с образованием двух 3-углеродных молекул глицеральдегидфосфата.

2), окислительно-восстановительный этап – идут ферментативные реакции субстратного фосфорилирования, когда происходит извлечение энергии в виде АТФ непосредственно в момент окисления субстрата. Так, молекула глюкозы подвергается дальнейшему ступенчатому расщеплению и окислению до двух 3-углеродных молекул пировиноградной кислоты. В суммарной виде процесс гликолиза выглядит так:

С 6 Н 12 О 6 + 2 Н 3 РО 4 + 2 АДФ → 2 С 3 Н 6 О 3 + 2 АТФ + 2 Н 2 О

На этапе окисления глюкозы отщепляются протоны и электроны запасаются в форме НАДН. В мышцах в результате анаэробного дыхания молекула глюкозы распадается на две молекулы ПВК, которые затем восстанавливаются в молочную кислоту с использованием восстановленного НАДН. У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение):

С 6 Н 12 О 6 + 2 Н 3 РО 4 + 2 АДФ → 2 С 3 Н 5 ОН + 2 СО 2 + 2 АТФ + 2 Н 2 О

У других микроорганизмов расщепление глюкозы – гликолиз может завершаться образованием ацетона, уксусной кислоты и др.

Во всех случаях распад одной молекулы глюкозы сопровождается образованием 4 молекул АТФ. При этом в реакциях расщепления глюкозы 2 молекулы АТФ затрачиваются. Таким образом, в ходе бескислородного расщепления глюкозы образуется 2 молекулы АТФ. В целом энергетическая эффективность гликолиза невелика, т.к. 40% энергии сохраняется в виде химической связи в молекуле АТФ, а остальная энергия рассеивается в виде теплоты.

    Третий этап – стадия кислородного расщепления, или аэробного дыхания. Аэробное дыхание осуществляется в митохондриях клетки при доступе кислорода. Процесс клеточного дыхания также состоит из 3 этапов.

    Окислительное декарбоксилирование ПВК, образующейся на предыдущем этапе из глюкозы и поступающей в матрикс митохондрий. При участии сложного ферментного комплекса отщепляется молекула углекислого газа и образуется соединение ацетил-коэнзим А, а также НАДН.

    Цикл трикарбоновых кислот (Цикл Кребса). Этот этап включает большое число ферментативных реакций. Внутри матрикса митохондрий ацетил-коэнзим А (который может образовываться из различных веществ) расщепляется с высвобождением еще одной молекулы углекислого газа, а также образованием АТФ, НАДН и ФАДН. Углекислый газ поступает в кровь и удаляется из организма через органы дыхания. Энергия, запасенная в молекулах НАДН и ФАДН, используется для синтеза АТФ на следующем этапе клеточного дыхания.

    Окислительное фосфорилирование – многоступенчатый перенос электронов от восстановленных форм НАДН и ФАДН по цепи транспорта электронов, встроенной во внутреннюю мембрану митохондрий, на конечный акцептор кислород, сопряженный с синтезом АТФ. В состав цепи транспорта электронов входит ряд компонентов: убихинон (коэнзим Q), цитохромы b, c, a, выступающие переносчиками электронов. В результате функционирования электрон-транспортной цепи атомы водорода от НАДН и ФАДН разделяются на протоны и электроны. Электроны постепенно переносятся на кислород, так образуется вода, а протоны перекачиваются в межмембранное пространство митохондрий, используя энергию потока электронов. Затем протоны возвращаются в матрикс митохондрий, проходя через специальные каналы в составе встроенного в мембрану фермента АТФ-синтетазы. При этом образуется АТФ из АДФ и фосфата. В цепи транспорта электронов есть 3 участка сопряжения окисления и фосфорилирования, т.е. мест образования АТФ. Механизм образования энергии и виде АТФ в митохондриях объясняется хемиосмотической теорией П. Митчелла. Кислородное дыхание сопровождается выделением большого количества энергии и аккумуляцией ее молекулах АТФ. Суммарное уравнение аэробного дыхания выглядит так?

С 6 Н 12 О 6 + 6О 2 + 38 Н 3 РО 4 +38 АДФ → 6 СО 2 + 6 Н 2 О + 38 АТФ

Таким образом, при полном окислении одной молекулы глюкозы до конечных продуктов – углекислого газа и воды при доступе кислорода образуется 38 молекул АТФ. Следовательно, основную роль в обеспечении клетки энергией играет аэробное дыхание.

Сходство между фотосинтезом и аэробным дыханием:

    Необходим механизм обмена углекислого газа и кислорода.

    Необходимы специальные органеллы (хлоропласты, митохондрии).

    Необходима цепь транспорта электронов, встроенная в мембраны.

    Происходит преобразование энергии (синтез АТФ в результате фосфорилирования).

    Происходят циклические реакции (цикл Кальвина, цикл Кребса).

Различия между фотосинтезом и аэробным дыханием:

Фотосинтез

Аэробное дыхание

Анаболический процесс, в результате которого из простых неорганических соединений синтезируются молекулы углеводов.

Процесс диссимиляции, в результате которого молекулы углеводов расщепляются до простых неорганических соединений.

Энергия АТФ накапливается и запасается в углеводах.

Энергия запасается в виде АТФ.

Кислород выделяется.

Кислород расходуется.

Углекислый газ и вода потребляются.

Углекислый газ и вода выделяются.

Происходит увеличение органической массы.

Происходит уменьшение органической массы.

У эукариот процесс протекает в хлоропластах.

У эукариот процесс протекает в митохондриях.

Происходит только в клетках, содержащих хлорофилл, на свету.

Происходит во всех клетках в течение жизни непрерывно.